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We study the Kondo lattice model which is modified by the Holstein term, involving both the Kondo
exchange coupling and the electron-phonon coupling constants, characterized by J and g, respectively. The
model is solved by employing the dynamical mean-field theory in conjunction with the exact diagonalization
technique. A zero-temperature phase diagram of symmetry unbroken states at half filling is mapped out which
exhibits an interplay between the two interactions and accounts for both spin and charge fluctuations. When the
Kondo exchange coupling is dominant the system is in the Kondo insulator state. Increasing g for small values
of J leads to a Kondo insulator-metal transition. Upon further enhancement of g a transition to the bipolaronic
insulating phase takes place. Also a small region with non-Fermi-liquid behavior is found near the Kondo
insulator-metal transition.
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I. INTRODUCTION

There has been continued interest in a class of compounds
called heavy-fermion semiconductors, which exhibit a spin
and a charge gap at low temperatures typically ranging from
1 to 100 meV.1,2 In contrast to the ordinary band insulators,
these two gaps are different, indicating a separation of the
spin and charge degrees of freedom brought about by corre-
lation effects. The gap formation in heavy-fermion semicon-
ductors is attributed to the renormalized hybridization be-
tween a broadband of conduction electrons and a nearly flat
band of strongly correlated f electrons.

The Kondo lattice model �KLM� at half filling is consid-
ered to be a good starting point for investigating the proper-
ties of the heavy-fermion semiconductors. In this model, at
each lattice site a local moment interacts with the spin of a
conduction electron and, thus, results in complex correlation
effects between them. In fact, a conduction and a localized
electron with antiparallel spins undergo a spin-flip process,
causing itinerant electrons to leave a trace of their spin ex-
change at each localized spin site. As a result, the direction
of a localized spin is affected by the history of the electrons
passing through it. There are similar correlation effects in the
periodic Anderson model due to the dynamical aspects of the
localized electrons.

Experiments involving the Kondo insulators at high mag-
netic fields indicate the closure of the Kondo insulating gap,
exemplifying a transition from the Kondo insulator to a cor-
related metal.3,4 It is expected that the electron-phonon
�e-ph� interaction leads to similar results. Many experiments
suggest that the e-ph effects are important in describing a
number of observations such as the existence of an unusual
phonon softening in the Kondo lattice, CeCu2, which is in-
dicative of coupling between electrons and phonons.5 It is
believed that the coupling between phonon modes and the
Kondo effect could manifest new material properties, such as
non-Fermi-liquid behavior and unconventional
superconductivity.6–8 Furthermore, the lattice plays an im-
portant role in some heavy-fermion compounds, such as

Yb14MnSb11, called 14-1-11, where various properties can be
altered through isoelectronic substitutions.9 In particular,
Burch et al.,9 motivated by the coexistence of the magnetic
and heavy-fermion properties in these compounds, set out to
study the Kondo-phonon coupling experimentally. Their ul-
trafast optical experiments showed that the relaxation time
and amplitude of the photoinduced response increase signifi-
cantly at low temperatures. These authors, consequently,
concluded that such low-temperature behavior is an indica-
tion of a charge gap and of the softening of phonons. Our
theoretical results are consistent with these experimental
findings. Our calculations show that for small g values the
imaginary part of the self-energies diverges as �n→0, which
confirms the presence of a charge gap. Moreover, the calcu-
lated phonon spectral function shows a considerable phonon
softening for g values close to the transition point from the
metallic phase to the insulating bipolaronic phase.

Even fewer studies have been devoted to the role played
by lattice vibrations in these compounds. The role of the
lattice vibrations is not trivial, but if, on general grounds, the
minimal effect of e-ph coupling is a phonon-retarded attrac-
tion between conduction electrons with opposite spins, then
the spin excitation has a gap, while the charge excitation,
depending on the strength of the e-ph coupling, can be either
gapful or gapless. Therefore, there arises a competition be-
tween the spin and charge fluctuations whose behavior is
determined, on one hand, by the relative strength of the
Kondo exchange between the conduction electrons and the
localized moments and, on the other hand, by the conduction
electron-phonon coupling, leading to a complicated phase
diagram. It is the goal of this paper to investigate the dy-
namical competition between the e-ph and Kondo interac-
tions.

This paper is organized as follows. In Sec. II we present
the Holstein-Kondo lattice model �H-KLM� which is solved
by employing the dynamical mean-field theory �DMFT� in
conjunction with the exact diagonalization �ED� technique.
The results for the phase diagram of the system and phonon
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spectral function are presented in Sec. III. Finally, in Sec. IV,
we talk about the concluding remarks.

II. MODEL IN DMFT SCHEME

A natural way of incorporating the e-ph coupling in the
KLM is to add the Holstein coupling term to its Hamiltonian.
In the Holstein coupling the phonon variables are coupled to
the local density of the conduction electrons. In this paper,
we will present the zero-temperature phase diagram of the
H-KLM at half filling. The focus is on the transition between
the unbroken-symmetry ground state as the e-ph and Kondo
interactions parameters, J and g, are varied.

The H-KLM Hamiltonian is defined by

H = − t �
�i,j��

�ci�
† cj� + c.c.� +

J

2 �
i,��

Si · �ci�
† ���ci��

+ g�
i

�ni − 1��bi
† + bi� + �0�

i

bi
†bi, �1�

where ci� �ci�
† � and bi �bi

†� are, respectively, destruction �cre-
ation� operators for itinerant electrons with spin � and local
vibrons of frequency �0 on site i, ni is the electron density
on site i, Si is the spin operator for the localized spin on site
i, � is a pseudovector represented by Pauli spin matrices, t
stands for the itinerant electrons’ hopping matrix elements
between the nearest-neighbor sites, J is the coupling strength
between itinerant electrons and localized spins, and g de-
notes the electron-phonon coupling. We do not consider the
Coulomb repulsion term between itinerant electrons because
it tends to suppress the double occupation of sites, and in our
model the exchange coupling J already does the same thing.

Our calculations are based on the dynamical mean-field
theory,10 a powerful nonperturbative tool for studying the
properties of strongly correlated systems, which allows us to
treat, on equal footing, the two kinds of interactions present
in our model. This technique, which becomes exact in the
limit of infinite coordination number, reduces the full lattice
many-body problem to a local impurity embedded in a self-
consistent effective bath of free electrons, mimicking the ef-
fect of the full lattice on the local site. Our model �1�
becomes a Holstein-Kondo impurity model,

H = − �
k�

Vk�c0�
† ak� + c.c.� + �

k�

�kak�
† ak�

+
J

2�
��

S0 · �c0�
† ���c0�� + g�n0 − 1��b† + b� + �0b†b ,

�2�

where �k and Vk are the energies and the hybridization pa-
rameters of the effective impurity model �bath parameters�
and the phonons are defined only on the impurity site 0,
which is a representative site of the lattice. A self-
consistency condition links effective impurity model �2� to
the original lattice problem. Adopting a semicircular density
of states �DOS� 	0���= �2 /
D��D2−�2 of the noninteracting
system, corresponding to a Bethe lattice with the half band-
width D, the self-consistency relation imposed on the DMFT
solution is given by

D2

4
G�i�n� = �

k

Vk
2

i�n − �k
. �3�

We use the ED technique to solve the effective impurity
model.11 This solver allows us to access the ground-state
properties of the system with a finite-energy resolution. The
ED technique consists of restricting the sum in Eq. �3� to a
small number of levels �ns� and, moreover, it truncates the
infinite phonon Hilbert space, allowing for a maximum num-
ber of excited phonons Nph. The ground state and the Green’s
function of our discretized model are determined via the
Lanczos procedure, and the self-consistency equation in turn
allows us to derive a different free impurity Green’s function
Gimp

0 �i�n�. A different set of bath parameters is obtained by
minimizing the following cost function:

�2 =
1

nmax + 1 �
n=0

nmax

�Gimp
0 �i�n�−1 − Gns

0 �i�n�−1� , �4�

where Gns

0 �i�n� is the free impurity Green’s function of the ns

site. The fit of Gimp
0 �i�n� is performed on the imaginary axis

i�n= i�2n+1�
 / �̃ with a fictitious inverse temperature �̃,
which introduces a low-energy cutoff.12 The process is iter-
ated until convergence is reached. The value of Nph has to be
chosen with special care in strong coupling, where phonon
excitations are energetically convenient. Here we use Nph
ranging from 30 to 50. As far as the discretization of the bath
is concerned, the convergence of self-energy as a function of
Matsubara frequencies is exponentially fast and ns�8–9 is
enough to obtain converged results.13 In all the calculations
presented here the convergence of both truncations has been
checked by repeating the calculations for larger values of ns
and Nph.

In the KLM, the polarization cloud of conduction elec-
trons produced by a local moment may be felt by another
local moment, when the coupling strength is weak. This pro-
vides the mechanism for the Ruderman-Kittel-Kasuya-
Yosida �RKKY� interaction. On the other hand, the same
polarization cloud can also form a singlet bound state with
the local moment.14 The RKKY interaction leads to a long-
range-ordered antiferromagnetic �AF� phase and the Kondo
effect screening leads to short-range spin correlations due to
the formation of coherent Kondo spin singlets. There is a
quantum phase transition between the two limiting phases
upon changing the parameters of the model.15 Here, follow-
ing the work of Werner and Millis,16 by symmetrization of
the Green’s function, we have suppressed the AF phase
caused by RKKY interaction in the weak-coupling limit.

III. RESULTS

Figure 1 shows the T=0 phase diagram of the half-filled
H-KLM in the parameter space of J and g with D=2t=2 and
�0 / t=0.2. All types of long-range orders are excluded. Three
different phases are distinguished: metallic phase and the bi-
polaronic and Kondo insulating phases. In what follows, a
detailed discussion of the phase diagram of these systems
will be presented. The Kondo lattice model �g=0� and Hol-
stein model �J=0�, which are special limiting cases of the
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H-KLM, have been extensively studied using the DMFT.
The ground state of the KLM is the Kondo insulating phase
with a spin and a charge gap for all J values.17 For the
Holstein model, the ground state is metallic. The metallic
phase is found to be a Fermi liquid, in the sense that the
Luttinger sum rule 	�0�=	0�0� for the spectral function
	���=−Im G��+ i0+� /
 or, equally stated, the limit of
Im G�i�n�→−1 as �n→0 is satisfied ��n is the Matsubara
frequency�. Upon increasing g, the conduction electrons lose
their mobility, eventually acquiring polaronic character, in
which the presence of an electron is associated with a finite
lattice distortion. Also, the same e-ph coupling can cause any
two polarons to attract and form a bound pair in real space,
called a bipolaron.18 In the absence of pair hopping, the bi-
polaron formation would cause the system to undergo a first-
order metal to bipolaronic insulating phase transition at the
critical coupling gc.

19,20 Meyer et al.21 reported that there is a
coexistence region near gc, which is reduced as the phonon
frequency �0 is decreased and disappears for �0�0.10D.
The bipolaron formation may be accommodated by recon-
structing the system into a phase-separated state22 or a
charge-ordered state in which the doubly occupied and
empty sites alternate in real space.23

At small fixed J values, with increasing e-ph coupling, a
continuous transition to a metallic state occurs at a critical
coupling gc1�J�, whose value increases with increasing J.
This behavior is physically expected. An increase in J leads
to a larger insulating gap, and this, in turn, leads to the sup-
pression of the charge fluctuations which would otherwise
couple to phonons. As a result a transition to the metallic
state occurs at larger e-ph coupling. We also find that the
metallic phase near gc1 shows non-Fermi-liquid character.
Further increase in g causes a metal-bipolaronic phase tran-
sition taking place at a critical coupling gc2. As can be dis-
tinguished, a Holstein coupling is weakly affected by ex-
change coupling between conduction electrons with local
spins. The metallic state becomes more correlated as g or J is

increased. This is reflected in the decreasing behavior of the
quasiparticle weight z=1 / 	1−Im �i�0� /�0
 when g or J is
increased. �The graph for the quasiparticle weight is not pre-
sented in here.�

Figure 2 shows the imaginary part of the electron self-
energy, Im �i�n�, for J=0.1 and several values of g in the
vicinity of both phase transitions. For small g values, the
imaginary part of the self-energies diverges as �n→0, indi-
cating the presence of a charge gap 	see panel �a�
. Increas-
ing g causes the system to change its phase from an insulator
to a bad metal in the sense that its self-energy extrapolates to
a finite value Im �i0+����J��0 for g�gc1 	panel �b�
.
Hence, a finite lifetime is found at the Fermi level for a
narrow range of e-ph couplings near gc1, indicating that well-
defined quasiparticles do not exist in this range. The viola-
tion of the Luttinger sum rule in this region is also seen from
Im G�i�n�, which tends to a negative constant �c�0� in the
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FIG. 1. �Color online� Zero-temperature phase diagram of the
unbroken-symmetry Holstein-Kondo lattice model at half filling.
The model shows three different phases: metallic, bipolaronic, and
Kondo insulating phases. The narrow shaded region with non-
Fermi-liquid character is seen near the Kondo insulator-metal
transition.
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FIG. 2. �Color online� Imaginary part of electron self-energy,
Im �i�n�, obtained at different values of g in the vicinity of both
phase transitions, with fixed J=0.1. Panels �a�–�c�: Im �i�n� in the
vicinity of the transition from the Kondo insulator state to the me-
tallic state. Changing the Im �i�n� behavior as �n→0 from di-
verging to extrapolating to zero shows the insulator-metallic phase
transition. Panel �d�: Im �i�n� in the vicinity of the transition from
the metallic state to the bipolaronic state. Inset: the double occu-
pancy d= �n↑n↓� as a function of g. The transition from the metallic
state to the bipolaronic state is clearly visible by observing when
the double occupancy’s jump to �1 /2 begins to set in.
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limit of �n→0, with �c��
	0�0�=1. Although the discrete-
ness of the spectra obtained in the exact diagonalization tech-
nique does not allow us to unambiguously identify the non-
Fermi-liquid region, we believe that the spectral function at
g=0 displays a narrow insulating gap, whose width is pro-
portional to the value of J, with two peaks on each side. For
a fixed J, increasing g causes the low-energy spectrum to
widen and it is also suppressed. If these peaks overlap before
being damped completely, a narrow pseudogap forms near
the Fermi level EF. With further enhancement of g, there is a
rapid shallowing of the pseudogap until finally a quasiparti-
cle peak forms at EF. At this stage, the system will have a
Fermi-liquid character. Panel �c� represents a point in the
Fermi-liquid metallic phase where, as explained below, the
electron self-energy extrapolates to zero in the limit of �n
→0.

In the ED method, the virtual temperature 1 / �̃ plays the
role of a lower-energy cutoff and �0 �the first Matsubara
frequency� takes the value of 
 / �̃. In order to see whether or
not the lim �i�0�→0 as �0→0, we have used three differ-
ent values for �̃ ��̃=300,400,500� or equivalently three dif-
ferent values for �0, and by way of extrapolating we have
found that the limit of self-energy approaches zero. The
choice of a finite number of bath levels, ns, introduces a
systematic error in the evaluation of Im �i�n�, particularly

at very low frequencies, and working with larger values of �̃
does not eliminate the above-mentioned systematic errors.
This inherent inaccuracy restricts the precise evaluation of
the range of non-Fermi-liquid behavior in the vicinity of gc1.

Our calculations, using different �̃ values, show that the in-
accuracy at the critical e-ph coupling for the transition from
the Kondo insulating phase to the non-Fermi metallic phase
and from the non-Fermi metallic phase to the Fermi-liquid
phase are at most equal to 0.02, thereby leaving the overall
picture of our phase diagram nearly the same. For clarifica-
tion purposes, we have shaded the non-Fermi-liquid region
in Fig. 1. More detailed results on the spectra might be ob-
tained by the numerical renormalization-group �NRG� tech-
nique.

Upon increasing g further, there is a weak narrowing of
the quasiparticle peak until it disappears at the second critical
value of e-ph coupling, gc2, where a gap opens. The inset of
panel �d� shows the double occupancy d= �n↑n↓� as a func-
tion of g. There is no signature of the Kondo insulator-metal
transition in the double occupancy, but at gc2 the double
occupancy jumps suddenly to d�1 /2, indicating a discon-
tinuous transition to the bipolaronic phase.

The top panel of Fig. 3 shows the phonon spectral func-
tion, 	ph���=−Im d��+ i0+� /
, for J=0.1 as a function of
e-ph interaction strengths. The phonon Green’s function is
defined by d���= ��bi ;bi

†���. There is no signature of the
transition from the Kondo insulating phase to the metallic
�non-Fermi� state in the phonon spectrum, whereas the tran-
sition from the metallic phase to the bipolaronic phase is
clearly visible by the negative spectral weight. The justifica-
tion for this is that in our model phonons couple to the
charge fluctuations. The effect of an increasing g near gc1 is
just to enhance the charge fluctuations continuously, result-
ing in a stronger coupling between electrons and phonons

which leads to the softening of the phonon. Our calculation
of the phonon spectral function for the points in the non-
Fermi-liquid region for different J values indicates that as
long as we are away from the bipolaronic phase, the phonon
spectral function appears just like the case shown in the top
panel of Fig. 3, except that it is slightly shifted to the left and
is somewhat widened.

The top panel of Fig. 3 also illustrates how the phonon
mode is softened with increasing g. The softening phonon
mode is a manifestation of a lattice instability similar to the
structural phase transitions occurring in crystals. Stability is
restored by the condensation of the unstable mode which is
the result of a nonzero expectation value of the phonon op-
erator ��b��0� or in the large average number of excited
phonons in the ground state �see the inset of the top panel of
Fig. 3�. The appearance of a negative spectral function for
��0 when the bipolaronic state is approached implies that
there is a large increase in the lattice displacement. In the
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FIG. 3. �Color online� Phonon spectral function for different
values of g. The bare phonon frequency is �0=0.2 and a Lorentzian
broadening with the full width at half maximum of 0.02 has been
implemented. Top panel: spectral function for J=0.1 and various
values of g. A considerable phonon softening is seen upon ap-
proaching the transition to the bipolaronic insulator. The inset
shows the expectation value of lattice fluctuations, ��b+b†�2�, as a
function of the electron-phonon coupling g. Bottom panel: spectral
function for g=0.2 and various values of J. The transition to Kondo
insulator does not obviously affect the phonon spectral function.
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bipolaronic state, the phonon mode hardens back to the bare
mode as g assumes values greater than gc2. This is due to the
fact that screening is not effective in an insulating state
which is the same behavior already seen for the pure Hol-
stein model.24 The bottom panel of Fig. 3 shows the phonon
spectral function for g=0.2 and various values of J. The
phonon mode gradually hardens back to �0, as the J values
increase. We observe no signature of a transition to the
Kondo insulator in the phonon spectrum. The effect of in-
creasing J is to suppress continuously the charge fluctua-
tions, which results in a decoupling of electrons and
phonons, causing the phonon peak to exhibit hardening. In
contrast to the Holstein-Hubbard model results, where soft-
ening is absent in the Mott insulator phase and phonons are
effectively decoupled from electrons,24 here the hardening of
the phonon peak takes place very slowly.

IV. CONCLUDING REMARKS

In conclusion, we have studied the Holstein-Kondo lattice
model at half filling which has been useful in the study of
heavy-fermion semiconductors. We find that the model pre-
sents the physics of the Kondo insulator when the exchange
coupling J plays a dominant role and a transition to corre-
lated metal takes place for small J and intermediate e-ph
coupling g. Moreover, a bipolaronic-metal insulator transi-

tion takes place for small J and large g. We also find a small
region with non-Fermi-liquid character near the Kondo
insulator-metal transition.

As mentioned in Sec. I, it has been shown experimentally
that the heavy-fermion semiconductors exhibit a spin and a
charge gap at low temperatures typically ranging from 1 to
100 meV.1,2 Our phase diagram is consistent with these find-
ings. A direct and quantitative comparison with the experi-
mental values of these gaps requires accurate DOS calcula-
tions of a given system. However, since our model is solved
by employing the DMFT in conjunction with the ED tech-
nique, we were not able to present a quantitative account of
the above-mentioned gaps. To do so, one needs to use other
techniques such as the NRG. Works in this direction are in
progress.

Moreover, we and other researchers have studied the two-
channel Kondo lattice model.25,26 Extension of the present
work to the Holstein–two-channel Kondo lattice model
would shine light on the properties of the heavy-fermion
systems.

The remaining interesting questions will be how the phase
diagram and the nature of transitions will change as the vi-
brational frequency �0 or electron density n is changed. It is
also interesting to study the symmetry-breaking states such
as the antiferromagnetic and superconducting states.
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